System "Actions" - Stored-procedures surfaced in the App

Your system includes a set of program features which have been added to the main toolbar. How to access
them is detailed below.

Orixa Developers can add extra entries to this "Actions" menu-list by creating Stored Procedures in the
database and setting their Description Properties so that the App can install them.

Stored-procedures can be added to the App as a whole, or linked to BusinessObjects, or targetted to the
level of individual records of BusinessObjects. At each target-level the properties of the target can be
accessed by the Procedure if needed.

This is a powerful feature of Orixa as it allows Developers to update and change the Actions users can
execute in different parts of the App without the need for rebuilding the source code of the App.

These Stored-procedures can be used to insert new data, import data, find a record and display it, display
grids of data after other actions have been undertaken and many for other uses.

As each system is different, the actions they contain will all be unique. To find details of the specific functions performed by your own system's
System Actions, please review the Help below.

System Actions

Accessing the "System Actions"
1. From the main toolbar click on the "Actions"

- </ Actions - " Data Trees - g System -

W A Import Organistion / People from FMSys el

=l g‘? Backup Database and SystemnDB = 2. The list of specialized actions that has been
o - added to your system will display below.

» Search Framework SOL
-/ —

System Actions Menu

Note the content of this menu is created dynamically, and will vary
between different Apps

B ek bintabiasz: it Systemill The "Backup Database and SystemDB" Action

v 0K X Cancel ﬁ £t this procaduira Once an item is selected from the menu, a screen will show

) allowing the user to undertake the selected action.
IncludeDatelnBackupligme [|IncludeDatelnBackupiame

BackupSystemDB []BackupSystemDB 1. User editable elements are listed.
Be sure to tick the "Backup5ystemDB" check box if A .
Fchons e SipsFEviet 2. System Administrators have access to edit

the procedure. (This button is only visible
when System Administrators are running
the procedure, otherwise it is not shown).

System Actions Procedure Form

System Actions can be created by System Administrators. Please
consult items in the "Developer Guide" to see how this is done.

How are System-Actions Created?

A System Action is simply a Stored Procedure on your Orixa Database which has been decorated with aDescription that allows it to be accessed by
the App.

For the "Backup Database and SystemDB" System Action shown above, here is theSQL Definition of the Stored Procedure:

PROCEDURE " BackUpDat abase" (I N "DatabaseName" VARCHAR COLLATE "ANSI", | N "Incl udeDat el nBackupNane"
BOCOLEAN, | N "BackupSystenDB" BOOLEAN)

BEG N

DECLARE aBackupNane VARCHAR;

I F I ncl udeDat el nBackupNarme THEN
SET aBackupNane = Dat abaseNanme + '-BU-' + CAST(Current_Date as VARCHAR(10));
ELSE
SET aBackupNane = Dat abaseName + '-BU ;

END | F;
EXECUTE | MVEDI ATE
' BACKUP Dat abase "'+ DatabaseNane +'" AS "' + aBackupNane + '"

TO STORE "Backup" | NCLUDE Catal og ';
| F BackupSyst enDB THEN
EXECUTE | MVEDI ATE
' BACKUP Dat abase "SystenDB" AS
"' + aBackupName + '-SystenDB"
TO STORE "Backup" | NCLUDE Catal og ';
END | F;
END
DESCRI PTI ON
"[Properties]
Type=System
Title=lnport Organistion / People from FMsys
Li nkTabl e=
User Message=Find an ID for an Organisation fromFMSys, input this and the procedure will pull over
data from FMSys non-"Current" data is ignored
CheckFi rst=true
SecuritylLevel =40
| magel ndex=265";

The above SQL Definition creates the Stored Procedure and sets the Description to a value that means your Orixa App will load it at start-up.

Notes: How to use the "Properties"” saved with a Stored-procedure to control where the Procedure appears in your App

Type=System

This means that the stored procedure will be loaded into the App's main menu. The developer can use "System", "Entity" or "Record" after the
word "Type=" If Entity is selected the Stored Procedure will be added to the Entities Screen, and linked to the BusinessObject named in the
"LinkTable" Property.

Title=
Add a title to be displayed in the App, and to be shown on the execute-procedure window.

LinkTable=

Add the name of any BusinessObject data-table in the system. The Stored Procedure will then be linked to this data-table. This means it will be
displayed in the App wherever this BusinessObject is displayed. It also means that values from the BusinessObject will feed into parameters of the
Stored Procedure.

UserMessage=
Add an (optional) message to be displayed in the execute-procedure window.

Checkfirst=[true|false]
If "true" the user is asked to confirm: "Run Procedure [name]. Are you sure?" prior to execution.

SecurityLevel=[integer value 0 - 100]
If a user has a SecurityLevel below the value named, this Stored Procedure will not be shown as an Action when they log on to the App.

Imagelndex=[integer value 0 - 300]
Selects which App Icon is displayed when displaying the Stored Procedure Title.

When your Orixa App Starts all Stored Procedures that have correctly formatted Descriptions will be added
to your App User-Interface.

What happens when a user selects a Stored Procedure from within an App?

1. The App reviews the Parameters of the Stored Procedure. If the names of these parameters match the
names of a field in the Linked data-table the value from the currently open record will be substituted as
the value to be used in the procedure. If no matching field-name is found, a user-entry field is added to
the execute-procedure window. When the user clicks "OK" the parameter values added by the user will
be passed into the procedure.

2. The window is opened and awaits user input. If the "Cancel" button is clicked, nothing happens. If the
"OK" button is clicked, the procedure is excuted.

Special Parameters which can be accessed by Your Orixa App if they are present in your Stored-
procedure

When a procedure is run, your Orixa App will review the Parameters it contains. Orixa will look for a few special parameter-names and if it finds
them its behaviour will change.

Input-Parameter: "ID"

If a procedure is run at the level of a Record, a Parameter called "ID" will be automatically filled in with a value equal to the ID of the selected
record. This allows procedures that undertake work such as inserting child-data records.

Output-Parameter: "Result"

Note this is slightly confusing, as "Result" is the general term used with Stored-functions, in this case the "Result" is somewhat different, it can
be any type of value. If the Stored-procedure includes a parameter called "Result" its value will be shown to the user in a standard message box
after the Stored-procedure has run.

Output-Parameter: "UserMessage"
After the Stored-procedure has run, if the parameter "UserMessage is not blank, it will be shown to the user in a standard message box.
Output-Parameter: "NewID"

After the Stored-procedure has run, if the parameter "NewID" is not blank, the App will attempt to open the record with ID = New!ID in the data-
table named by the "LinkedTable" Property of the procedure.

Using In-App Tools to edit a System Accessible Stored Procedure

Stored-procedures can be created and altered in the DB Utility, either within your App or with your App closed. Just write a CREATE or ALTER
statement for the procedure in the SQL Editor window. You can copy the Definition of another procedure if needed.

In addition to this, Admin users with high Security Level, will see an "Edit this procedure" button in the "Run Procedure" window.This button is
not visible to normal users.

Using the Edit this Procedure Button

% mporOrghndPeo 1. From the window where the Stored

| system’s System Actions, please review the Help below.
% ple X
¥ OK % Cancel & Edit the procedure \ v OK X Cancel | &8 View Change Script) . ")
o Mmg- fEm ———— a Procedure is executed, click the "Edit the
isabon from FMSys, input this and 1

ind an 1D for an ni al the Title mpor rganistion / People from 5 H B
e i v dts o S ot oy || e oo [beg oS procedure" button. Note this button is only

ke |]
Find an 1D for an Organisation from FMSys, input this and the
UserMessage | procedure wil pul over data from FMSys non-"Current” data is
igno

visible to Develope-level users.

GheckFirse [CheckFist

2. A window opens with edits in which you can

Securi

el [a0

o EE _& enter all Orixa decorations that can be

Edit the

» added to a procedure. These map to the

values saved in the Description of the
Editing System Procedures Procedure (as explained above).

3. Once you have edited the decorations, you
can click "View Change Script" to show the
procedure.

1. From "View Change Script" a window opens
with the whole ALTER PROCEDURE SQL
statement.

2. A Developer can extend and ammend the
main SQL of the procedure at this point, if
they wish to change what the procedure
does.

3. The Description which has been added
matches the values entered in the previous
screen. You can manually edit these further
here if you wish.

B

X cose @saL - 0 P # Find/Replace -

L ALTER PROCEDURE "ImportOrgAndPeople” (IN "aID" INTEGER)
BEGIN
DECLARE Stmt STATEMENT;

2
3
4
S PREPARE Stmt FROM
[
o
]

'INSERT INTO Organisations ‘\
d (1D

Name ,

S0 ‘' UPDATE Organisat...s
SL SET MainContactID =
92 (SELECT MainContactID

-)
' + CAST(aID AS VARCHAR);
56 EXECUTE Stmt USING alID;

59 END
100 |

101 DESCRIPTION e
102 '[Properties] 4—/

103 Type=System

104 Title=Import Organistion / People from FMSys

105 LinkTable=

10€ UserMessage=Find an ID for an
107 CheckFirst=true

108 SecuritylLevel=49

109 ImageIndex=265

o] *

Editing System Procedure Alter Script

Organisation from FMSys, input this and the

Once you are happy with the SQL, you can click the "SQL" button,
selecct the choice on the menu to execute the SQL. This will
update the procedure

If you make changes without executing immediately, when you
return to the prior window you will be prompted to run the SQL so
changes are not lost.

Using a Stored-procedure to return a grid of data

A Stored-procedure may have added data to a database. If this is the case it may be useful to view a grid of the inserted data.

SQL includes a special set of keywords to allow this.

DECLARE Crsr CURSOR W TH RETURN FOR Stnt;

The Usual "DECLARE Crsr" keywords have the "WITH RETURN" keywords added. This results in a Stored-procedure which creates a grid of the

records selected by the "Stmt" Statement and displays it to the user.

Note that for this to work, the Stored-procedure in question must PREPARE the Stmt using valid SQL and end with the line:

OPEN Crsr;

Example of a Stored-procedure which returns a grid, and uses the "UserMessage output parameter

1 PROCEDURE "AddTaxesDueForMonth” (IN aDateEnd Date, OUT UserMessage VARCHAR({188))
Z BEGIN

3 DECLARE Crsr CURSOR WITH RETURN FOR Stmi;

4 DECLARE aStaffID INTEGER;

5 DECLARE aDateStart DATE;

€ DECLARE aCount INTEGER;

7 SET aDateStart = aDateEnd - INTERVAL '1' MONTH;

& PREPARE Stmt FROM

§ ' SELECT * FROM TaxesDue

10 WHERE DateEnd = ? ';

11 OPEN Crsr USING aDateEnd;

12 IF ROWCOUNT(Crsr) > @ THEN

132 SET UserMessage = '“"TaxesDue™ Data already seems to be added for this date, cannot continue.’';
14 ELSE

5 SET aCount = @;

16 PREPARE Stmt FROM

17 ' SELECT DISTINCT(StaffID) as StaffID
18 FROM Wages
15 WHERE DateDone BETWEEN 2 AND ? *;

20 OPEN Crsr USING aDateStart, aDateEnd;
21 FETCH First FROM Crsr('StaffID') INTO aStaffID;
22 WHILE NOT EOF(Crsr) DO

23 EXECUTE IMMEDIATE

24 * INSERT INTO TaxesDue

25 (staffID, DateEnd)

2€ VALUES

27 (?, #) " USING aStaffID, aDateEnd;

28 FETCH NEXT FROM Crsr('StaffID') INTO aStaffID;
25 SET aCount = aCount + 1;

30 END WHILE;

31 SET UserMessage = 'TaxesDue data inserted, ' + CAST(aCount AS VARCHAR) + ' records in total';
22 END IF;
33 CLOSE Crsr;

34 IF NOT UserMessage = '"TaxesDue" Data already seems to be added for this date, cannct continue.' THEN
35 PREPARE Stmt FROM

3E 'SELECT

37 1,

EL P.Fulliame,

35 TD.DateEnd,

40 TO.YY + "/ 4+ TD.HM as YYMM,
41 TD.GrossPay,

4z TD.GrossBonus,

43 TD.S5EE,

44 TD.SSER,

45 TD.PAYE,

4€ TD.BonusPAYE,

47 ''TaxesDue'' as LinkTable

48 FROM TaxesDue TD

45 LEFT JOIN People P ON P.ID = TD.StaffID
50 WHERE DateEnd = ? ';

51 OPEN Crsr USING aDateEnd;

52 END IF;

53 END

54

55

5€ DESCRIPTION

57 '[Properties]

58 Type=Entity

9 Title=End of Month: Generate “TaxesDue™ Records

0 LinkTable=TaxesDue

1 UserMessage=Add Records to the TaxesDue data-table
2 CheckFirst=true

3 Securitylevel=108

4 ImageIndex=265"

Procedure using "UserMessage" and Cursor with RETURN

The above Stored-procedure (full SQL code is repeated below) uses an "OUT Parameter" of "UserMessage" and sets this message in the body of
the Procedure.

It also DECLARES a CURSOR WITH RETURN, meaning that when the Statement at the end of the procedure runs and is opened, the user will see
the resulting data.

What the above procedure does:

1. Check whether data has already been entered for the "DateEnd" submitted. If it has, the procedure sets
the UserMessage to "... cannot continue" and stops.

2. If there is no data present for the given date, the procedure then inserts records into a "TaxesDue" data-
table. In this data-table computations are done to return the value of tax owed by staff.

3. Once all the records are inserted for the month in question, a statement is run to allow the user to view
all the inserted records.

Note: By adding the ID field and "LinkTable" field in the returned data, Orixa will be able to allow the user to
access the individual TaxesDue records in the Orixa App, giving them a chance to update and edit these
records.

1 PrROCEDURE "AddTaxesDueForvonth” (IN aDateEnd Date, |OUT UserMessage VARCHAR(18@))

BEGIN
DECLARE Crsr CURSOR WITH RETURN FOR Stmt;

2

3

4 DECLARE aStaffID I R:
5 DECLARE azDateStart DATE;
E
7
8

DECLARE aCount INTEGER;

SET aDateStart = aDateEnd - INTER! ‘1" MONTH;
PREPARE Stmt FROM

g " SELECT * FROM TaxesDue

10 WHERE DateEnd = ? ';

11 OPEM Crsr USING aDateEnd;
12 IF ROWCOUNT(Crsr) > @ THEN
13 SET UserMessage = '"TaxesDue" Data alre
14 ELSE

15 SET aCount = &;

1€ PREPARE Stmt FROM

17 ' SELECT DISTINCT(StaffID) as StaffID
18 FROM Wages

18 WHERE DateDone BETWEEM ? AND * ';

20 OPEN Crsr USING aDateStart, aDateEnd;
21 FETCH First FROM Crsr('StaffID') INTO aStaffID;
22 WHILE NOT EQF(Crsr) DO

y seems to be added for this date, cannot continue.

23 EXECUTE IMMEDIATE

24 ' INSERT INTO TaxesDue

25 (staffID, DateEnd)

26 VALUES

27 (?, ?) ' USING aStaffID, aDateEnd;

28 FETCH NEXT FROM Crsr('StaffID') INTO aStaffID;

235 SET aCount = aCount + 1;

30 END WHILE;

31 SET UserMessage = 'TaxesDue data inserted, ' + #AST(aCount AS VARCHAR) + ' records ii

32 END IF;

33 CLOSE Crsr;

24 ems to be added for this date, cannot continue.' THEN
35

36 LE

37 1D,

38 P.Fulllame,

28 TD.DateEnd,

40 TD.YY + "'/'' + TD.MM as YYMM,

41 TD.GrossPay,

42 TD.GrossBonus,

43 TD.SSEE,

44 TD.SSER,

45 TD.PAYE,

4E TD.BonusPAYE,

47 ‘'TaxesDue'' as LinkTable "
48 FROM TaxesDue TD -
45 LEFT JOIN People P ON P.ID = TD.StaffID

50 WHERE DateEnd = ? ';

51 OPEN Crsr USING aDateEnd;

sz | END IF;

53 END

54

55

56 DESCRIPTION

57 '[Properties]

58 Type=Entity

55 Title=End of Month: Generate "TaxesDue" Records
€0 LinkTable=TaxesDue

€1 UserMessage=Add Records to the TaxesDue data-table
62 CheckFirst=true

€3 Securitylevel=106

€4 ImageIndex=265"

Annotated version of Procedure

1. "UserMessage" declared as an Output Parameter, and updated and used in the SQL script.

2. Use of the "WITH RETURN" keywords, and the statement that will be run at the end of the procedure's
operation.

3. The user of the "LinkTable" field, allowing Orixa to contextualize the returned data and link it to editable
records in the App.

Example SQL Script for the procedure

PROCEDURE " AddTaxesDueFor Mont h" (I N aDat eEnd Date, OUT User Message VARCHAR(100))
BEG N

DECLARE Crsr CURSOR W TH RETURN FOR St nt ;

DECLARE aSt af f1 D | NTEGER;

DECLARE aDateStart DATE;

DECLARE aCount | NTECER,

SET aDateStart = abDateEnd - |INTERVAL '1' MONTH,;

PREPARE Stnt FROM

' SELECT * FROM TaxesDue

VHERE Dat eEnd = ? ';

OPEN Crsr USI NG aDat eEnd,;

I F ROMCOUNT(Crsr) > 0 THEN

SET User Message = ' "TaxesDue" Data already seens to be added for this date, cannot
ELSE

SET aCount = O;

PREPARE Stnt FROM

' SELECT DISTINCT(StafflD) as StafflD

FROM Wages

continue."';

WHERE Dat eDone BETWEEN ? AND ? ';

OPEN Crsr USI NG aDateStart, aDateEnd;

FETCH First FROM Crsr(' StafflD) | NTO aStaffl D,
VWHI LE NOT EOF(Crsr) DO

EXECUTE | MVEDI ATE

" I NSERT | NTO TaxesDue

(Staffl D, DateEnd)

VALUES

(?, ?) " USING aStaffl D, abateEnd;

FETCH NEXT FROM Crsr (' StaffI D) I NTO aStaffl D
SET aCount = aCount + 1,

END WHI LE;

SET User Message = ' TaxesDue data inserted, ' + CAST(aCount AS VARCHAR) + ' records in total"';
END | F;

CLCSE Crsr;

I F NOT User Message = '"TaxesDue" Data already seenms to be added for this date, cannot continue.’
THEN

PREPARE Stnt FROM

' SELECT

1 D,

P. Ful | Name,

TD. Dat eEnd,

TD.YY + '"/'" + TD. MM as YYW

TD. G ossPay,

TD. Gr ossBonus,

TD. SSEE,

TD. SSER,

TD. PAYE,

TD. BonusPAYE,

"' TaxesDue'' as LinkTabl e

FROM TaxesDue TD

LEFT JO N People P ON P.ID = TD. StaffI D

WHERE DateEnd = ? ';

OPEN Crsr USI NG aDat eEnd;

END | F;

END

DESCRI PTI ON

"[Properties]

Type=Entity

Titl e=End of Month: Generate "TaxesDue" Records

Li nkTabl e=TaxesDue

User Message=Add Records to the TaxesDue data-table
CheckFi rst =t rue

SecuritylLevel =100

I magel ndex=265"

